УДК 620.9: 657.471

Братута Э.Г., Шерстюк В.Г., Харлампиди Д.Х.

АНАЛИЗ ВЛИЯНИЯ СОПРОТИВЛЕНИЯ СОЕДИНИТЕЛЬНЫХ ТРУБОПРОВОДОВ ХОЛОДИЛЬНОЙ МАШИНЫ НА ЕЕ ЭФФЕКТИВНОСТЬ

Национальный технический университет «ХПИ», АОЗП НПП «Холод», ИПМаш НАН Украины

Несмотря на достаточно продолжительную предысторию научно-технических исследований и практического опыта эксплуатации холодильных машин (XM), влияние гидродинамики процессов в основных блоках контура и его соединительных элементах на эффективность холодильного цикла в имеющихся научных публикациях не получило достаточного отражения.

Вместе с тем, в зависимости от технологической функции холодильной машины и особенностей компоновки основного оборудования, потребляющего холод, влияние указанного фактора может быть достаточно весомым. Это обусловлено тем, что длина трубопровода, соединяющего с одной стороны испаритель с компрессором, а с другой – с дросселирующим устройством и конденсатором, может быть значительной. В связи с этим возникает задача, связанная с установлением влияния длины и диаметра каналов соединительных трубопроводов на холодильный коэффициент установки.

Помимо чисто термодинамической оценки влияния гидравлических сопротивлений испарителя, конденсатора и элементов трубной обвязки на эффективность цикла XM, возникает и другая задача. Речь идет о возможности оптимального выбора диаметра канала трубных элементов, т.к. наличие большого диаметра приводит к росту материальных затрат, а при уменьшении диаметра возникают дополнительные потери энергии, связанные с прокачкой хладагента, что, естественно, скажется на холодопроизводительности XM.

В одной из недавних работ [1], базировавшейся на более раннем исследовании [2] применительно к работе теплового насоса (ТН), исследовано влияние гидродинамики тракта его обвязки на тепловую эффективность. По известным соображениям ряд выводов, полученных в этих работах, с качественной точки зрения можно распространить и на оценку эффективности холодильной машины.

Вычислительный эксперимент, выполненный в [1], показал, что необратимые потери давления в соединительных трубопроводах оказывают влияние на эффективность работы ТН. В работе [1] даны два цикла для трубопроводов разной длины с диаметром 15 мм, соединяющих испаритель с компрессорно-конденсационным блоком. Показано, что параметры цикла с ростом длины трубопровода изменяются. Авторами особенно выделяется роль падения давления на входе в компрессор, так как это приводит к уменьшению плотности хладагента, а, соответственно, и массового расхода в контуре циркуляции. Для количественной оценки влияния потерь давления авторы [1] рассмотрели TH с хладагентом R22 при использовании атмосферного воздуха со средней температурой 21 °C в качестве низкопотенциального источника теплоты. Температура хладагента на входе в испаритель принималась равной 10 °C, а температура конденсации после охлаждения пара составляла 50 °C. В расчетном исследовании диаметр соединительных трубопроводов d_т принимался равным 12, 16 и 20 мм. Показано, что при d_т =15 мм с увеличением длины трубопровода L_т с 2 до 15 м теплопроизводительность TH соответственно уменьшается на 16,2 %. Кроме того, в этой же работе показано, что при увеличении длины соединительного трубопровода из-за роста потерь давления теплопроизводительность TH уменьшается тем сильнее, чем меньше диаметр трубопровода. Так, при длине трубопровода 15 м и уменьшении его диаметра с 20 до 12 мм теплопроизводительность уменьшалась на 17,1 %.

На уменьшение холодопроизводительности XM и увеличение потребляемой ею энергии при росте потерь давления в соединительных трубопроводах указывается и в работе [3]. Здесь так же, как и в [1], отмечается, что особое влияние на холодопроизводительность оказывают потери давления в трубопроводах всасывания. Потери давления жидкостной магистрали можно рассматривать как незначительные. Авторы работы [3] потери давления оценивают по эквивалентному перепаду температур на фреоновой магистрали. При этом даются конкретные рекомендации для проектирования: снижение температуры насыщения, эквивалентное соответствующему падению давления, не должно превышать 1-2 К. Исходя из этого, в [3] даются рекомендации для оптимальных скоростей потока хладагента в трубопроводах холодильных машин для различных хладагентов: на линиях всасывания (от 5 до 40 м/с) и нагнетания (от 8 до 30 м/с). Последнее несколько противоречит правильному замечанию самих авторов [3] об особом влиянии потерь давления на линии всасывания.

Негативные последствия увеличения гидравлических сопротивлений во всасывающем трубопроводе рассматривались также в работе [4]. Здесь отмечается, что особо ощутимое воздействие на холодопроизводительность имеют потери давления в низкотемпературных одно- и многоступенчатых холодильных установках. Отмечается, что при расчете потерь давления в двухфазном потоке необходимо учитывать не только потерю давления, расходуемую на преодоление сил трения среды о стенку канала, но и дополнительные потери давления, связанные с рассеиванием энергии при взаимодействии фаз. По оценкам авторов [4] эта составляющая потерь давления колеблется от 10 до 20 % от общего его уровня.

В работе [5] дается физическая модель и количественные оценки влияния потерь давления на линии всасывания и нагнетания в холодильной машине. Показано, что, если, к примеру, потеря давления при всасывании хладагента в компрессор составляет 0,1 бар, то при температуре испарения порядка -15 °C потеря хлодопроизводительности составит 9,2 %, а мощность на валу компрессора (при заданной холодопроизводительности) должна быть увеличенной почти на 7 %, что в основном обусловлено увеличением степени сжатия на 3,5 %.

Выполненный в [5] при тех же исходных данных расчет показал, что потеря давления в нагнетательной линии порядка 0,2 бар (при температуре конденсации 30 °C) приводит к потере холодопроизводительности на 1,3 % и увеличению требуемой мощности на валу компрессора на 2,8 % при увеличении степени сжатия на 1,66 %.

По поводу потерь давления в жидкостном трубопроводе (речь идет о потере давления в трубопроводе, соединяющем конденсатор с регулирующим вентилем) в [5] нет количественной оценки. Отмечается лишь отрицательный эффект снижения расхода через регулирующий вентиль из-за уменьшения давления на входе. Указанное снижение расхода может усиливаться благодаря возможному самопроизвольному парообразованию, возникающему при существенной потере давления.

О допустимых потерях давления в трубной обвязке XM упоминается и в работе [6]. Авторы считают, что, к примеру, для аммиачных и пропановых парокомпрессионных машин допустимая потеря давления во всасывающей магистрали не должна превышать величины, эквивалентной снижению температуры насыщения на 1 °C, т.е. дей-

ствительному снижению холодопроизводительности на 4 %. В этой работе приводятся также рекомендации для допустимых скоростей движения хладагентов на стороне всасывания и нагнетания, уровень которых практически совпадает с рекомендуемым в работе [3].

В завершении этого обзора известных нам результатов следует сослаться на работу [7], в которой приведена зависимость изменения коэффициента преобразования энергии (КОП) ТН от падения давления ΔP_{μ} в испарителе. Из приведенных графиков, построенных для хладагентов R123 и R115, следует, что падение КОП линейно зависит от ΔP_{μ} и, к примеру, при увеличении ΔP_{μ} от 0 до 40 кПа КОП уменьшается более, чем на 20 %.

Из приведенного обзора можно сделать несколько выводов. Первый состоит в том, что гидравлические сопротивления в линии трубопроводной обвязки как холодильных машин, так и тепловых насосов оказывает существенное влияние на эффективность этих объектов теплоэнергетики.

Второй вывод состоит в том, что имеющиеся в литературе сведения по рассматриваемой задаче носят отрывочный характер и не отражают достаточную полноту решения задачи в ее комплексной и многопараметрической постановке.

Третий вывод, основанный на первых двух, определяет актуальность исследований, устанавливающих взаимосвязь эффективности холодильных машин и тепловых насосов и гидравлических сопротивлений в их трубопроводной сети, а также в трубных элементах конденсатора и испарителя.

Очевидно, что в рамках одной статьи не представляется возможным дать весь желаемый объем информации. Поэтому, используя разработанную нами математическую модель комплексной оценки работа XM и TH, рассмотрим простейшую одноступенчатую схему холодильной машины с заданной холодопроизводительностью Q_0 , температурами испарения t_{μ} , конденсации t_{κ} и степенью переохлаждения в конденсаторе Δt_{κ} .

В указанной постановке, когда основным результатом анализа является определение изменения холодильного коэффициента в функции гидравлических сопротивлений трубной обвязки, возникает необходимость в привлечении, по сути, всего объема математического описания холодильной установки. При этом, кроме процессов в соединительных элементах, необходимо учитывать и реальные процессы в компрессоре, дросселе, испарителе и конденсаторе.

Рассматриваемая схема XM и ее теоретический цикл в T–S координатах показаны на рис. 1. При заданной холодопроизводительности Q_0 расход хладагента

$$\mathbf{M} = \frac{\mathbf{Q}_0}{\mathbf{q}_x},\tag{1}$$

где q_x – удельная холодопроизводительность.

Одним из существенных и принципиальных недостатков как работ [1–7], так и других публикаций, посвященных анализу работы XM и TH, является допущение о том, что теплота q_x при наличии падения давлений ΔP_u в испарителе (в фактически не-изобарном процессе) равна разности энтальпий. В соответствии с предложенной нами энтропийной методикой расчета [8]

$$q_{x} = (T_{6} - 0, 5\Delta T_{e})(S_{7}' - S_{6}'), \qquad (2)$$

где Т и S – абсолютная температура и энтропия в точке 6 цикла; ΔT_{μ} – уменьшение температуры сухого насыщенного пара в точке 7, эквивалентное падению давления ΔP_{μ} ; S₇' – энтропия сухого насыщенного пара при T₇'= T₇ – ΔT_{μ} .

Рисунок 1 – Цикл и схема холодильной машины К – конденсатор; Д – дроссель; И – испаритель; Кр – компрессор; ЭД – электродвигатель

При известных из теплового расчета испарителя длине L_u и диаметре d_u трубных элементов величина ΔP_u определялась как сумма потерь на трение ΔP_{urr} , местные сопротивления ΔP_{um} , потерь на ускорение потока ΔP_{uy} и потерь $\Delta P_{u cr}$, определяемых влиянием статического напора столба жидкости.

В соответствии с [9]

$$\Delta P_{e\delta} = \xi n \frac{L_{e}}{d_{e}} \frac{(\rho \upsilon)^{2}}{2\rho''} \Psi_{\delta\delta}^{2}, \qquad (3)$$

где ξ – коэффициент трения в однофазном потоке с массовой скоростью ро, определяемый по известным сопротивлениям в функции критерия Рейнольдса; n – число трубных элементов; $\psi_{\rm Tp}$ – коэффициент, учитывающий влияние паросодержания потока и определяемый по рекомендации работы [10].

В соответствии с [10]

$$\Delta \mathbf{D}_{e_6} = \frac{(\rho \upsilon)^2}{2\rho''} \left\{ \left(\frac{\chi_7}{\varphi_7}\right)^2 - \left(\frac{\chi_6}{\varphi_6}\right)^2 + \left(\frac{\rho''}{\rho'}\right) \left[\left(\frac{1-\chi_7}{1-\varphi_7}\right)^2 - \left(\frac{1-\chi_6}{1-\varphi_6}\right)^2 \right] \right\},\tag{4}$$

где χ и ϕ – массовое и объемное паросодержание в процессе 6–7, а

$$\Delta \mathbf{P}_{a\,\bar{n}b} = \mathbf{\hat{I}}_{a} g \Big[\rho' \Big(1 - \overline{\phi} \Big) + \rho'' \overline{\phi} \Big], \tag{5}$$

где H_и – высота испарителя; $\overline{\phi}$ – среднее по поверхности объемное паросодержание.

Не останавливаясь на деталях, фактически аналогично ведется расчет суммарных потерь давления ΔP_{κ} в конденсаторе.

С учетом неизобарности процесса конденсации на участке 3-4 удельная теплота конденсации определяется как

$$\mathbf{q}_{\hat{\mathbf{e}}} = \left(\mathbf{T}_3 - \mathbf{0}, 5\Delta \mathbf{T}_{\hat{\mathbf{e}}}\right) \left(\mathbf{S}_3 - \mathbf{S}_4'\right),\tag{6}$$

где ΔT_{κ} – уменьшение температуры кипения хладагента, эквивалентное величине ΔP_{κ} ; S₄' – энтропия кипящего хладагента, соответствующая температуре T₄'= T₄ – ΔT_{κ} .

Индикаторная работа, затрачиваемая в компрессоре, определялась как

$$\ell_{\hat{e}p} = \eta_i (i_1 - i_2). \tag{7}$$

Обобщение результатов многочисленных экспериментальных исследований позволило авторам работы [11] получить для определения индикаторного КПД η_i соотношение вида

$$\eta_{\rm i} = 0,7 + 0,0732\pi - 0,011\pi^2 + 4,21 \cdot 10^{-4}\pi^3, \tag{8}$$

где $\pi = P_2/P_1$ – степень сжатия в компрессоре.

Холодильный коэффициент определяется из известного [6] выражения

$$\varepsilon = \frac{q_{\flat}}{\ell_{\flat p}}.$$
(9)

В общем виде выражение для потерь давления в i-м элементе трубной обвязки на участках (см. схему на рис.1) ab, cd, и gh с учетом потерь на трение, местных сопротивлений, ускорения потока и нивелирного напора, можно записать как

$$\Delta \mathbf{E}_{i} = \frac{(\rho \upsilon^{2})_{i}}{2} \left[\xi_{i} C_{i} \frac{\mathbf{L}_{i}}{\mathbf{d}_{i}} + \xi_{i} + 2\rho_{i} \left(\frac{1}{\rho_{2}} - \frac{1}{\rho_{1}} \right)_{i} \right] + \left(\rho_{1} - \rho_{2} \right)_{i} gh_{i}, \qquad (10)$$

где ξ_i – коэффициент сопротивления трения; C_i – поправочный коэффициент на естественную шероховатость труб, значения которого принимались в соответствии с [1]; $\xi_{\text{мi}}$ – коэффициент местного сопротивления; ρ_1 и ρ_2 – средние значения плотности хладагента на входе и выходе участка трубопровода; h_i – пьезометрическая высота участка; υ – скорость потока, определяемая из уравнения неразрывности при среднем значении ρ на рассматриваемом участке.

При заданной температуре в испарителе сопротивление трубопроводной связи на участке ef (см. рис. 1) можно не рассматривать, так как оно входит в общий сброс давления в регулирующем органе. Кроме того, при расчете внешних характеристик XM принимается [12], что пропускная способность дроссельного устройства, обеспечивающего необходимый перепад давлений между конденсатором и испарителем, соответствует расходу хладагента через испаритель, что практически всегда обеспечивается в условиях эксплуатации. Это позволяет исключить характеристику дросселирующего устройства из общей системы уравнений, описывающих работу ХМ.

Очевидно, что приведенные уравнения (1)–(10) дополняются известными соотношениями для коэффициентов ξ и ξ_{M} , соотношениями для плотности двухфазной среды, а также эмпирическими соотношениями для термодинамических свойств и теплофизических характеристик хладагентов [13, 14].

Не останавливаясь на технологии проведения численного эксперимента, включающего соответствующие итерационные процедуры, рассмотрим основные результаты анализа влияния неизобарности процессов в основных блоках и трубных связях XM на ее эффективность.

Анализ уравнений, образующих расчетную базу XM, показал, что можно выделить порядка двенадцати независимых факторов, взаимосвязанное влияние которых определяет эффективность общего процесса производства холода. В рамках настоящей статьи рассмотрим на первом этапе лишь влияние таких факторов, как длина и диаметр элементов трубной обвязки при использовании различных хладагентов. При этом заданными будем считать: холодопроизводительность $Q_0 = 10$ кВт, температуру испарения $t_{\mu} = -15^{\circ}$ С, температуру конденсации $t_{\kappa} = 30^{\circ}$ С. Анализ ограничим, во-первых, установлением зависимости потерь давления $\Delta P_{\rm B}$ во всасывающей, $\Delta P_{\rm H}$ нагнетательной и $\Delta P_{\rm ж}$ жидкостной линиях от диаметров d и длин L этих линий и, во-вторых – определением связи холодильного коэффициента є с величинами ΔP , d и L в указанных трех линиях для различных хладагентов: R22, R134a, R717.

Ниже приведены графики, иллюстрирующие результаты расчетов.

Рисунок 2 – Влияние длины соединительных линий на потери давления ΔР и холодильный коэффициент ε

а) линия нагнетания (d_n=0,015 м; d_ж=0,012 м; L_ж=6,8 м; d_{вс}=0,012 м; L_{вс}=3,0 м; d_н=0,009 м; L_н=7,0 м); б) линия всасывания (d_{вс}=0,012 м; d_ж=0,012 м; L_ж=6,8 м; d_{наг}=0,015 м; L_{наг}=4,5 м; d_п=0,009 м; L_н=7,0 м). $-\Delta P = f(L);$ $-\epsilon = f(L)$

Интегрированные технологии и энергосбережение 1'2007

Рисунок 3 – Влияние диаметров соединительных линий на потери давления ΔР и холодильный коэффициент є для хладагента R717

Расчет показал, что потери давления в жидкостной линии ΔP_{x} практически не оказывают влияния на эффективность XM. Поэтому на рис. 4 приводятся лишь величины ΔP_{x} в функции длины L_{x} для различных хладагентов, а на рис. 5 даны зависимости от варьируемых диаметров d_{x} этой линии для R717.

Рисунок 4 – Потери давления в жидкостной линии $\Delta P_{\text{ж}} = f(L_{\text{ж}})$ при: d_ж=0,012 м; d_в=0,012 м; L_в=3,0 м; d_н=0,015 м; L_н=4,5 м; d_µ=0,009 м; L_µ=7,0 м

Рисунок 5 – Потери давления в жидкостной линии $\Delta P_{\#\pi} = f(L_{\#\pi})$ для R717 при: d_H=0,015 м; L_H=4,5 м; d_B=0,012 м; L_B=3,0 м; d_H=0,009 м; L_H=7,0 м

Полученные результаты позволяют сделать следующие выводы.

1. Сформированная система уравнений, описывающая термодинамические и гидродинамические процессы в одноступенчатой парокомпрессионной установке, позволила впервые комплексно проанализировать влияние потерь давления в элементах трубной обвязки и неизобарности испарения и конденсации хладагента на эффектив-

ность ХМ.

2. Сравнительная количественная оценка степени влияния потерь давления в трубных элементах, связывающих основные блоки холодильной машины, показала, что указанное влияние существенно зависит от вида хладагента. Так, при прочих равных условиях потеря давления при использовании аммиака (R717) оказывается почти в 7 раз ниже, чем при использовании R134a. Соответственно, холодильный коэффициент для R717 в 1,7 раза выше, чем для R134a. Это обстоятельство еще раз подтверждает преимущество холодильных станций, на которых аммиак используется в качестве хладагента.

3. Для одного и того же хладагента, к примеру, для R717 зависимость потерь давления ΔP и холодильного коэффициента є, найденных при прочих равных условиях для обвязки, выполненной из труб различного диаметра, имеет нелинейный характер. Так, на нагнетательной линии уменьшение диаметра трубы в 1,7 раза приводит к увеличению ΔP в 12 раз, при этом холодильный коэффициент є уменьшается на 6%. Аналогичное изменение d на линии всасывания вызывает изменение ΔP в 9 раз, в то время, как величина є уменьшается почти в 1,5 раза.

4. Разработанная методика расчета может без существенных изменений в структуре системы уравнений быть использованной при решении целого ряда оптимизационных задач, связанных с повышением эффективности как холодильных машин, так и теплонасосных установок.

Обозначения

 q_x – удельная холодопроизводительность, кДж/кг; χ и ϕ – массовое и объемное паросодержания; P – абсолютное давление, кПа; q_{κ} – удельная теплота конденсации, кДж/кг; ρ – плотность, кг/м³; υ – скорость, м/с; d – диаметр, м; L – длина, м.

Индексы: и – испаритель; к – конденсатор; кр – компрессор; н – нагретательная линия; в – всасывающая линия; ж – жидкостная линия.

Литература

1. Володин В.И., Здитовецкая С.В. Влияние гидродинамики тракта обвязки теплового насоса на его тепловую эффективность //Труды БГТУ. Сер.Ш. Химия и технология неорганических веществ. – 2005. – Вып. ХШ. – С. 166–169.

2. Володин В.И. Комплексный подход к расчету параметров компрессионной холодильной машины // Холодильная техника. – 1998. – №2. – С. 8–10.

3. Нимич Г.В., Михайлов ВА., Бондарь Е.С. Современные системы вентиляции и кондиционирования воздуха. – К.: Аванпост Прим, 2003. – 626 с.

4. Холодильные установки / Чумак И.Г., Чепурненко В.П., Чуклин С.Г. – М.: Легкая и пищевая промышленность, 1981. – 344 с.

5. Учебник по холодильной технике / В. Маяке, Ю. Эккерт, Ж.-Л. Кошпен. – М.: Московский университет, 1998. – 1138 с.

6. Курылев Е.С., Герасимов Н.А. Холодильные установки. – Л.: Машиностроение, 1970. – 672 с.

7. Domansk P.A., Didiou D.A. Performance of R22 alternative refrigerants in a system with cross-flow and counter-flow heat exchangers. NISTIR 5945, National Institute of Standards and Technology, Gaithersburg, MD, 1997. – 32 p.

8. Братута Э.Г., Харлампиди Д.Х., Шерстюк В.Г. Влияние неизобарности про-

цессов конденсации и испарения на энергетические показатели холодильных машин и тепловых насосов // Вестник НТУ «ХПИ». Новые решения в современных технологиях. – Харьков: НТУ «ХПИ», 2006.

9. Chwla J.M., Thaw E.A. // Kaltetechnik-Klinatisierung. – 1967. Bd.19. – №10. – pp.28–32.

10. Теплообменные аппараты холодильных установок / Данилова Г.Н., Богданов С.Н., Иванов О.П. и др. – Л.: Машиностроение, 1986. – 303 с.

11. Ларкин Д.К., Проценко В.П. Применение ЭВМ для расчета коэффициента преобразования теплонасосных установок с поршневым компрессором // Промышленная энергетика. – 1988. – №7. – С. 39–41.

12. Быков А.В., Кальнинь И.М., Крузе А.С. Холодильные машины и тепловые насосы. – М.: Агропромиздат, 1988. – 287 с.

13. Теплофизические основы получения искусственного холода: Справочник. Холодильная техника / Под ред. А.В. Быкова. – М.: Пищепром, 1980. – 232 с.

14. Перельштейн И.И. Термодинамические свойства важнейших рабочих веществ холодильных машин // Труды ВНИХИ. – 1976. – 51 с.

УДК 620.9: 657.471

Братута Е.Г., Шерстюк В.Г., Харлампіді Д.Х.

АНАЛІЗ ВПЛИВУ ОПІРУ З'ЄДНУЮЧИХ ТРУБОПРОВОДІВ ХОЛОДИЛЬНОЇ МАШИНИ НА ЇЇ ЕФЕКТИВНІСТЬ

На підставі зформованої системи рівнянь, яка описує термодинамічні та гідродинамічні процеси в холодильній парокомпресійній одноступеневій машині, виконано чисельний експеримент щодо впливу опіру трубопровідної обв'язки на холодильний коефіцієнт при використанні хладагентів R22, R124a і R717.